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Abstract—Clustering is one of the essential tasks in machine
learning and statistical pattern recognition. One of the most
popular approaches in cluster analysis is the one based on
the parametric finite mixture model. However, often, parametric
models are not well adapted to represent complex and realistic
data sets. Another issue in the finite mixture model-based clus-
tering approach is the one of selecting the number of mixture
components. The Bayesian non-parametric statistical methods for
clustering provide a principled way to overcome these issues.
This paper proposes a new Bayesian non-parametric approach
for clustering. It relies on an Infinite Gaussian mixture model
with an eigenvalue decomposition of the covariance matrix of
each cluster, and a Chinese Restaurant Process (CRP) prior
over the hidden partition. The CRP prior allows to control the
model complexity in a principled way, and to automatically learn
the number of clusters from the data. The covariance matrix
decomposition allows to fit various flexible models going from
simplest spherical ones to the more complex general one. We
develop a Gibbs sampler to learn the various models and apply
it to simulated data and benchmarks, and a real-world data
issued from a challenging problem of whale song decomposition.
The obtained results highlight the interest of the proposed non-
parametric parsimonious mixture model for clustering.

I. INTRODUCTION

Clustering is one of the essential tasks in machine learning
and statistics. One of the most popular approaches in cluster
analysis is the one based on the parametric finite mixture
model [1][2]. However, these parametric models may not be
well adapted to represent complex and realistic data sets.
Another issue in the finite mixture model-based clustering
approach is the one of selecting the number of mixtures (model
selection). Bayesian Non-Parametric (BNP) [3][4] methods
for clustering, including Infinite Gaussian Mixture Models
(IGMM) [5], Chinese Restaurant Process (CRP) mixtures and
Dirichlet Process Mixtures (DPM) [6][7][8][9][10] provide a
principled way to overcome these issues. They avoid assuming
restricted functional forms and thus allow the complexity
and accuracy of the inferred model to grow as more data is
observed. They also represent a good alternative to the difficult
problem of model selection in parametric mixture models,
namely the finite Gaussain Mixture Model (GMM).

In this work, we rely on the BNP formulation of the
Gaussian mixture and a flexible decomposition of the covari-
ance matrix of each Gaussian density which has proven its
big flexibility in cluster analysis [11][12][2]. This leads to
an Infinite Parsimonious Gaussian Mixture Model (IPGMM)
which is more flexible in term of modeling and its use in

clustering, and automatically provides the number of clusters.

The paper is organized as follows: Section II briefly dis-
cusses previous work on finite Gaussian mixture clustering.
Then, section III presents the proposed model and its learning
technique. In section IV, we give experimental results to
evaluate the proposed approach.

II. PARAMETRIC PARSIMONIOUS GAUSSIAN CLUSTERING

A. Model

Let X = (x1, . . . ,xn) be a sample of n i.i.d observations in
Rd, and let z = (z1, . . . , zn) be the corresponding unknown
cluster labels where zi ∈ {1, . . . ,K} represents the cluster
label of the ith data point xi, K being the possibly unknown
number of clusters.

Parametric Gaussian clustering, also called model-based
clustering [13] [2], is based on the finite GMM [1] in which
the probability density function of the data is given by:

p(xi|θ) =
K∑
k=1

πk Nk(xi|θk) (1)

where θ = {πk,θk}Kk=1 are the GMM parameters which
include the non-negative mixing proportions πk that sum to one
and θk = (µk,Σk) which are respectively the mean vector and
the covariance matrix for the kth Gaussian component density.

The GMM clustering has been extended to parsimonious
GMM clustering [12][11] by exploiting an eigenvalue decom-
position of the group covariance matrices, which provides a
wide range of very flexible models with different clustering
criteria. The eigenvalue decomposition of the covariance ma-
trix Σk of each cluster k is given by:

Σk = λkDkAkD
T
k (2)

where λk = |Σk|1/d, Dk is an orthogonal matrix of eigen-
vectors of Σk and Ak is a diagonal matrix with determinant
1 whose diagonal elements are the normalized eigenvalues
of Σk in a decreasing order. As pointed in [12], the scalar
λk determines the volume of cluster k, Dk its orientation
and Ak its shape. Thus, this decomposition leads to fourteen
flexible models [12] going from simplest spherical models
to the complex general one ans hence is adapted to various
clustering situations.



B. Parameter estimation

The parameters θ of the Gaussian mixture can be estimated
in a maximum likelihood (ML) framework by maximizing the
observed data likelihood

p(X|θ) =
n∏
i=1

K∑
k=1

πk Nk(xi|θk), (3)

or in a maximum a posteriori (MAP) estimation (Bayesian)
framework by maximizing the posterior parameter distribution

p(θ|X) = p(θ)p(X|θ), (4)

p(θ) being a prior distribution on the model parameters θ.
The maximum likelihood estimation usually relies on the
Expectation-Maximization (EM) algorithm [14][15] or EM
extensions. The maximization of the posterior can still be
performed by EM, namely in the case of conjugate priors as
in [16]. It can also be performed by Markov Chain Monte
Carlo (MCMC) sampling techniques as in [17][18][19]. For the
case of parsimonious finite Gaussian mixture, several learning
algorithms have also been proposed. They in majority rely on
a maximum likelihood estimation via EM or EM extensions
[11][12] or on Bayesian (MAP) estimation using EM as in [16]
or by MCMC sampling techniques like the Gibbs sampler as
in [17][18].

However, in the finite GMM approach for clustering, the
number of clusters is required. One of the main issues in
the parametric model-based clustering is therefore the one of
selecting the number of mixture components (clusters) that fit
at best the data. The choice of the optimal number of clusters
can be performed via penalized log-likelihood criteria such as
the Bayesian Information Criterion (BIC)[20] or the Akaike
Information Criterion (AIC) [21], etc.

BNP mixtures for clustering offer a principled alternative
to infer the number of clusters from the data in a single run,
rather than in a two-stage approach as in standard model-based
clustering [4][6][5]. They assume that the observed data are
governed by an infinite number of clusters, but only a finite
number of them does actually generates the data. In the next
section, we rely on the infinite mixture model formulation to
derive the proposed approach.

III. THE PROPOSED BAYESIAN NON-PARAMETRIC
PARSIMONIOUS GAUSSIAN MIXTURE FOR CLUSTERING

BNP mixture approaches for clustering assume general
process as prior on the infinite possible partitions, which is
not restrictive as in classical Bayesian inference. Such a prior
can be a DP [10][9][6] or CRP [22][6]. Several BNP models
have considered the general GMM, that is the infinite GMM
[5] which can have interpretation in term of the CRP mixture
[6] or by equivalence the DPM [9][6]. For additional review
on BNP clustering, see for example [6].

The proposed BNP parsimonious clustering approach ex-
ploits the eigenvalue decomposition of the cluster covariance
matrices as in [12][11] and integrates it into an infinite mixture
modeling framework by using a CRP prior. This leads to
an Infinite Parsimonious Gaussian Mixture Model (IPGMM)
which is very flexible in terms of modeling, and automatically
infers the optimal number clusters from the data. In the next

section, we derive the proposed CRP mixture in the case
of the parsimonious model, and then we provide an MCMC
estimation technique for the derived models.

A. Chinese Restaurant Process (CRP) parsimonious mixture

The CRP provides a distribution on the infinite partitions
of the data, that is a distribution over the positive integers
1, . . . , n. Consider the following joint distribution of the un-
known cluster assignments:

p(z1, . . . , zn) = p(z1)p(z2|z1) . . . p(zn|z1, z2, . . . , zn−1)·
(5)

Each term of this joint distribution can be computed from
the CRP prior as follows. Suppose there is a restaurant with
an infinite number of tables and in which customers are
entering and sitting at tables. We assume that customers are
social, so that the ith customer sits at table k with probability
proportional to the number of already seated customers nk,
and may choose a new table with a probability proportional
to a small positive real number α which represents the CRP
concentration parameter. This can be explicitly formulated as
follows

p(zi = k|z1, ..., zi−1)=CRP(z1, . . . , zi−1;α)

=

{ nk

i−1+α if k ≤ K+
α

i−1+α if k > K+
(6)

where K+ is the number of tables for which the number of
customers sitting in nk > 0, and for k ≤ K+ that means
that k is a previously unoccupied table and for k > K+ that
means a new table to be occupied. From this distribution, one
can therefore allow assigning new data to possibly previously
unseen (new) clusters as the data are observed, after start-
ing with one cluster. In clustering with the CRP, customers
correspond to data points and tables correspond to clusters.
In CRP mixture, the prior CRP(z1, . . . , zi−1;α) is completed
with a likelihood with parameters θk with each table (cluster)
k (i.e., a multivariate Gaussian likelihood with mean vector and
covariance matrix in the GMM case), and a prior distribution
(G0) for the parameters. For example, in the GMM case, one
can use a conjugate multivariate normal inverse-Wishart prior
distribution for the mean vectors and the covariance matrices.
This corresponds to the ith customer sits at table zi = k
chooses a dish (the parameter θzi ) from the prior of that table
(cluster). The CRP mixture can be summarized according to
the following generative process.

zi ∼CRP(z1, . . . , zi−1;α) (7)
θzi∼G0 (8)
xi ∼p(.|θzi)· (9)

In our proposed infinite parsimonious Gaussian mixture, the
cluster covariance matrices are parametrized in term of an
eigenvalue decomposition to provide more flexible clusters
with possibly different volumes, shapes and orientations. This
can be seen as a variability of dishes in terms of Chinese
Restaurant interpretation. Note that one can also give interpre-
tation of the CRP mixture in terms of DPM [10][6].

B. MCMC Gibbs sampling for model learning

We developed an MCMC Gibbs sampling technique, as in
[5][23][8][6], to learn the proposed Bayesian non-parametric



Decomposition Model-Type Prior Applied to
λI Spherical IG λ
λkI Spherical IG λk

λA Diagonal IG each diagonal element of λA
λkA Diagonal IG each diagonal element of λkA

λDADT General IW Σ = λDADT

λkDADT General IG and IW λk and Σ = DADT

λkDkAkDT
k General IW Σk = λkDkAkDT

k

TABLE I. CONSIDERED PARSIMONIOUS GMMS VIA EIGENVALUE DECOMPOSITION AND THE ASSOCIATED PRIOR FOR THE
COVARIANCE. NOTE THAT I DENOTES AN INVERSE DISTRIBUTION, G A GAMMA DISTRIBUTION ANDW A WISHART DISTRIBUTION.

parsimonious mixture model. The developed Gibbs sampler
is summarized by the pseudo-code (1). The used priors on

Algorithm 1 Gibbs sampling for the proposed IPGMM
Inputs: a data set (x1, . . . ,xn), hyper-parameters and number of
Gibbs samples

1: Initialize the model hyper-parameters H .
2: Start with one cluster K+ = 1,θ1 = {µ1,Σ1}
3: for t = 2, . . . ,#samples do
4: for i = 1, . . . , n do
5: for k = 1, . . . ,K+ do
6: if (nk =

∑N
i=1 zik)− 1 = 0 then

7: We decrease K+ = K+ − 1; θ(t) = {θ(t)} \ θzi

8: end if
9: end for

10: Sample a cluster label z(t)i from the posterior:
p
(
zi|z\zi ,X,θ

(t), H
)
∝ p

(
xi|zi,θ(t)

)
CRP(z\zi ;α)

11: if z(t)i = K+ + 1 then
12: We get a new cluster, we increase K+ = K+ + 1 and

we sample a new cluster parameter θ
(t)
zi from the prior

distribution as in Table I
13: end if
14: end for
15: for i = 1, . . . ,K+ do
16: Sample the parameters θ

(t)
k from the posterior distribution.

17: end for
18: Sample the hyperparameter α(t) ∼ p(α(t)|K+) ∝ G(a, b) [24]
19: z(t+1) ← z(t)

20: end for
Outputs: {θ̂, ẑ, K̂ = K+}

the model parameters depend on the type of the parsimo-
nious model (see Table I). Thus, sampling the model param-
eters varies according to the considered parsimonious mixture
model. Indeed, yet we investigated seven parsimonious models,
covering the three families of the mixture models: the general,
the diagonal and the spherical family. The parsimonious mod-
els therefore go from the simplest spherical one to the more
general full model. Table I summarizes the considered models
and the corresponding prior for each model used in Gibbs
sampling. We note that the resulting posterior distributions for
the considered models are close to those in [17].

IV. EXPERIMENTS

We performed experiments on both simulated and real
data in order to test our proposed non-parametric method.
We highlight its flexibility in terms of modeling and its use
for clustering, as well as inferring the number of clusters
from the data. The numerical results are reported in terms of
comparisons of the observed-data log-likelihood, the estimated

partition of the data, and the selection of the actual number of
clusters, for different candidate models. When the number of
clusters for the estimated partition equals the actual one, we
also report the misclassification error rate. We compared our
Bayesian non-parametric parsimonious mixture with different
alternatives including: model-based clustering and Bayesian
parametric clustering approaches using finite Gaussian mix-
tures. In the experiments, each algorithm is run ten times with
different initializations and the Gibbs sampler generates 2000
samples where the first 200 samples was discarded as burn-
in. The best solution, corresponding to the highest posterior
probability is then selected.

A. Experiment on simulated data and benchmarks

1) Experiment on simulated data: We first considered a
two-class situation to illustrate the interest of the proposed
clustering approach. This situation is the same as for the
parametric parsimonious mixture approach proposed in [12].
It consists in a sample of n = 500 observations from a
two-component Gaussian mixture in R2 with the following
parameters: π1 = π2 = 0.5, µ1 = (0, 0)T and µ2 = (3, 0)T ,
Σ1 = 100 I2 and Σ2 = I2.

Figure 1 shows the simulated data and the obtained par-
titions by the proposed Bayesian non-parametric clustering
approach for three different parsimonious models, and the pos-
terior distribution of the number of clusters K for each model.
Table II reports the estimated number of clusters and the
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K̂ = 5, L̂ = −5900.3 K̂ = 2, L̂ = −5112.5 K̂ = 2, L̂ = −5119.4

Fig. 1. A two-class data set with (top): the log-likelihood values
(L̂) and estimated number of clusters (K̂) obtained by three pro-
posed IPGMM: spherical model with identical cluster volumes (left),
spherical model with different cluster volumes (middle) and general
model (right), and (bottom): the posterior distribution of the number
of clusters.



obtained values of the log-likelihoods for each corresponding
partition obtained by the parametric Bayesian approach based
on Gaussian finite mixture (GMM) and the proposed non-
parametric approach (IPGMM). First, it can be observed that,

GMM IPGMM
Model K̂ log-lik K̂ log-lik

λI 2 -5583.6 5 -5900.3
λkI 5 -5157.7 2 −5112.5
λA 4 -5474.5 9 -5428.9
λkA 5 -5157.7 7 -5288.8

λDADT 4 -5417.5 7 -5312.7
λkDADT 2 -5560.8 8 -5412.5
λkDkAkD

T
k 5 −5.0938 2 -5.1194

TABLE II. LOG-LIKELIHOOD VALUES AND THE ESTIMATED
NUMBER OF CLUSTERS OBTAINED BY THE FINITE GMM AND THE

PROPOSED IPGMM FOR THE SIMULATED DATA.

the partition provided by the spherical model (λI) which does
not allow clusters with different volumes, can not reconstruct
the actual partition. This model also fails for the finite GMM
case [12]. However, the spherical model λkI, which allows
different cluster volumes, fits at best the underlying structure
of the data and provides a precise partition (the err-rate equals
4.80%) with the actual number of clusters. It is even slightly
more precise than the general model. Indeed, the general model
λkDkAkD

T
k , which is the more complex model in terms the

number of parameters, provides a closely similar result (the
err-rate equals 4.40%). From the posterior cluster distributions,
we can also see that the spherical model with different cluster
volumes (λkI) is the model that reveals at best the actual
number of clusters compared to the other models. On the other
hand, we note that the diagonal models can not provide an
accurate partition, even the one allowing different volumes
(λkA). Furthermore, for this simulated data, the best log-
likelihood value, as it can be seen in Table II, corresponds
to the spherical model with different cluster volumes (λkI).
One can conclude that, in a non-parametric clustering, it is
important to consider clusters with different volumes, and at
least for this data set, the spherical model with different cluster
volumes (λkI) is the best model.

2) Experiment on benchmarks: In this experiment, we con-
sidered well-known real data sets1 of Iris, Old Faithful Geyser,
Trees, Wine and Diabetes. Table III shows the number of
observations, the dimension and the (possibly known) number
of clusters for each dataset.

Dataset Num. of data items (n) dimension (d) True K

Iris 150 4 3
Old Faithful Geyser 272 2 Unknown
Trees 31 3 Unknown
Wine 178 13 3
Diabetes 145 3 3
TABLE III. DESCRIPTION OF THE USED BENCHMARKS DATA.

Figure 2 shows the partition and densities estimated by the
proposed non-parametric parsimonious clustering approach for
Iris (top) and Geyser (bottom) with a spherical model (left),
a diagonal model (middle) and the general model (right). The
three models allow different cluster volumes. It also shows
the posterior distribution of the number of clusters for each
model for each of the two data sets. We note, that while
the number of classes for Geyser dataset is unknown, several

1from the UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
index.html

clustering studies estimate it between two and three. Table IV
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Fig. 2. Clustering results for Iris (top) and Geyser (bottom) obtained
by a spherical model (left), a diagonal model (middle) and the
general model (right), all allowing different cluster volumes, and the
corresponding posterior distributions of the number of clusters.

reports the numerical results for the two datasets. We can see
on Figure 2 that, for Iris data, both the spherical model λkI
and the diagonal model λkA which consider different cluster
volume provide the correct number of classes and allow to
reconstruct the hidden data structures. The misclassification
error rate for the diagonal model is 5.33% and the one for
the spherical model is 10.66%. However, the general model
underestimate the number of clusters. Let us also note that,
for the finite GMM clustering approach, the models which
provide the correct number of clusters are the diagonal models
λA and λkA and the corresponding misclassification error
rates are respectively 9.33% and 11.33%. This can make
more advantageous our non-parametric alternative. The general
model provides two clusters for this dataset. Table IV also
shows that, while the general model provides two clusters for
both the GMM approach and the proposed IPGGM one, the
partition provided by the proposed approach is the more likely
(best like-likelihood).

For the Geyser data, it can be observed on the graphical
results that the partitions obtained by the spherical model with
different volumes (λkI) and the general model λkDkAkD

T
k

are similar and can be seen as valid. The partition provided
by the diagonal model λkA can also be accepted. We also
note that, except for the spherical model with equal volumes
(λI), the estimated number of classes for the other models is
consistent with the literature (between two and three). Note
that for this data set, the parametric approach based on finite
GMMs provides likewise two clusters except for the spherical
model with equal cluster volumes. The spherical model with



Iris Geyser
GMM IPGMM GMM IPGMM

True value of K 3 -
Model K̂ log-lik K̂ log-lik K̂ log-lik K̂ log-lik

λI 5 -1643.5 5 -1712.6 3 -1597.4 10 -1659.8
λkI 5 -1663.8 3 -1722.8 2 -1630.6 2 -1634.5
λA 3 -1700.4 4 -1647.5 2 -1622.2 3 -1605.1
λkA 3 -1714.7 3 -1707.9 2 -1639.6 3 -1609.0

λDADT 2 -1629.3 4 -1562.8 2 -1638.0 2 -1601.9
λkDADT 2 -1641.6 4 -1566.4 2 -1605.6 3 −1593.9

λkDkAkD
T
k 2 −1583.1 2 −1559.7 2 −1594.7 2 -1595.7

TABLE IV. LOG-LIKELIHOOD VALUES AND THE ESTIMATED NUMBER OF CLUSTERS OBTAINED BY THE PARAMETRIC MIXTURE (GMM)
AND THE PROPOSED BAYESIAN NON-PARAMETRIC PARSIMONIOUS MIXTURE (IPGMM) FOR IRIS DATA AND GEYSER DATA.

different volumes (λkI) and the two more likely models are
the two general models λkDADT and λkDkAkD

T
k for a

partition into two and three clusters, both can be selected as
valid partitions. Finally, Table V shows the estimated number
of clusters for each of the four datasets. For the Trees data,

Model Iris Geyser Trees Wine Diabetes

λI 5 10 1 1 3
λkI 3 2 1 2 5
λA 4 3 2 3 3
λkA 3 3 2 1 5

λDADT 4 2 2 3 5
λkDADT 4 3 2 3 3
λkDkAkD

T
k 2 2 2 3 3

TABLE V. THE NUMBER OF CLUSTERS PROVIDED BY THE
PROPOSED IPGMM.

we observe that the majority of the parsimonious models in
our Bayesian non-parametric approach estimate 2 clusters. We
note that these results are similar to those obtained by[16] who
provide clustering results using EM with ML estimation and
with MAP estimation using a parametric Bayesian Gaussian
mixture. They indeed obtain two clusters when using a prior,
and three and five classes without using a prior. For the
Diabetes dataset we can see that most of our parsimonious
models automatically infer the good number of clusters (three),
similarly as in the model-based clustering approach [11]. For
the Wine dataset too, the retrieved number of clusters, for the
majority of models equals the actual one.

B. Experiment on real data: whale song decomposition

In this experiment, we apply the proposed approach to a
challenging problem of humpback whale song decomposition.
Humpback whales produce songs with a specific structure and
the study of that songs is very challenging and very useful for
bio-acousticians and scientists to namely understand how do
whales song and communicate (possibly according to which
vocabulary) and to have an idea about their origin, since the
songs of whales from different origins can be different. The
analysis of such complex signals that aims at discovering
the call units (which can be considered as a kind of whale
vocabulary), can be seen as a problem of unsupervised call
units classification as in [25]. We therefore reformulate the
problem of whale song decomposition as a clustering problem.
Contrary to the approach used in [25], in which the number
of clusters (call units in this case) has been fixed manually,
here, we apply our proposed IPGMM to find a partition of the
whale song into clusters, and automatically infer the number
of clusters from the data. The used data are available in

the framework of our SABIOD project2. The data consist of
MFCC parameters of 8.6 minutes of a Humpback whale song
recordings produced at few meters distance from the whale in
La Reunion - Indian Ocean.

Figure 3 shows the posterior distribution of the number of
clusters for different Bayesian non-parametric parsimonious
mixtures for the considered whale song signals. Table VI
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Fig. 3. Posterior distribution of the number of clusters of the whale song
data obtained by the proposed Bayesian non-parametric approach.

shows the number of estimated clusters and the log-likelihood
values obtained by the parametric GMM approach and the
proposed Bayesian non-parametric parsimonious method for
clustering the whale song data.

EM ML IPGMM
Model K̂ log-lik K̂ log-lik

λI 60 −2219.8 9 −2341.3
λkI 60 −2112.9 23 −2213.3
λA 22 −2143.5 18 −2195.8
λkA 59 −2005.9 11 −2190.0

λkDADT 51 −1981.1 24 −2158.9

λkDkAkD
T
k 19 −1.9418 15 −2.1234

TABLE VI. LOG-LIKELIHOOD VALUES (DIVIDED BY 103) AND
THE NUMBER OF ESTIMATED CLUSTERS FOR THE WHALE DATA.

One can see that the parametric approach in the majority
of cases seems to overestimate the number of whale songs,
because for this Humpback whale specie, in previous studies,
namely in [25], the experts estimated (manually) the number of
clusters of about 18 clusters with sometimes three additional
clusters, that is 21 clusters. On the other hand, the models
of the proposed non-parametric approach provide a plausible
number of whale song units. They seem to cover the assumed
number of clusters (18, 21), even if no ground truth is available

2Scaled Acoustic BIODiversity: http://sabiod.univ-tln.fr/data_samples.html



for this specific data set. The two general models λkDkAkD
T
k

and λkDADT , which are the more likely models for this
whale song dataset, provide respectively 15 and 24 song units
which are also reasonable. However, the simple spherical
model λI seems to be not adapted for this task. Now, we
analyze the result provided by the model λkDkAkD

T
k and we

show in Figure 4 the whale song partition, which correspond
to the whale song decomposition into several units. From

Fig. 4. Clustering partition of the whale song obtained by the non-parametric
approach (IPGMM) with the model λkDkAkD

T
k .

this decomposition, the clusters 8, 12 and 15 are uniformly
activated in time, therefore they would correspond to the
background (sea) noise, rather than actual whale song units.
Whereas, the remaining clusters are likely to correspond to
the whale song units. This can be more observed on Figure 5
which shows the spectrograms of the whale song units from the
partition obtained with the proposed approach and on which
we can see that the obtained song units are clearly conveying
information.
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Fig. 5. Whale songs spectrograms obtained with the proposed Bayesian
non-parametric approach with the most general model λkDkAkD

T
k .

V. CONCLUSION

In this paper we presented a new Bayesian non-parametric
parsimonious mixture approach for clustering. It is based on
an infinite Gaussian mixture with an eigenvalue decomposition
of the cluster covariance matrix and a Chinese Restaurant
Process prior. It allows deriving several flexible models and
avoids the problem of model selection encountered in the
standard maximum likelihood-based and Bayesian parametric
Gaussian mixture. We illustrated this method on simulated data
and benchmarks, and applied it to a challenging problem of
clustering bio-acoustic data. The obtaining results highlight the
interest of using parsimonious Bayesian clustering as a good
alternative to finite GMM clustering. Future work will concern
namely Bayesian model comparison.
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